Automatic detection and tracking of oil spills in SAR imagery with level set segmentation
نویسندگان
چکیده
Automatic detection and monitoring of oil spills and illegal oil discharges is of fundamental importance in ensuring compliance with marine legislation and protection of the coastal environments, which are under considerable threat from intentional or accidental oil spills, uncontrolled sewage and wastewater discharged. In this paper the level set based image segmentation was evaluated for the real-time detection and tracking of oil spills from SAR imagery. The developed processing scheme consists of a preprocessing step, in which an advanced image simplification is taking place, followed by a geometric level set segmentation for the detection of the possible oil spills. Finally a classification was performed, for the separation of lookalikes, leading to oil spill extraction. Experimental results demonstrate that the level set segmentation is a robust tool for the detection of possible oil spills, copes well with abrupt shape deformations and splits and outperforms earlier efforts which were based on different types of threshold or edge detection techniques. The developed algorithm’s efficiency for real-time oil spill detection and monitoring was also tested.
منابع مشابه
Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders
In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite s...
متن کاملDark Spot Detection from SAR Intensity Imagery with Spatial Density Thresholding for Oil Spill Monitoring
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. Abstract Since the 1980s, satellite-borne synthetic aperture radar (SAR) has been investigated for early warning and monitoring of marine oil spills to pe...
متن کاملImproved Oil Slick Detection and Classification with Polarimetric Sar
A study on the potential of space-borne polarimetric synthetic aperture radar (SAR) imagery for an improved detection and classification of oil spills is presented. An image data set consisting of five SIR-C/X-SAR acquisitions over the North Sea, English Channel, and Southern Italy is used. Results show that two land surface roughness indicators (i.e., the circular polarization coherence (CPC) ...
متن کاملNeural networks for oil spill detection using ERS-SAR data
A neural network approach for semi-automatic detection of oil spills in European remote sensing satellite-synthetic aperture radar (ERS-SAR) imagery is presented. The network input is a vector containing the values of a set of features characterizing an oil spill candidate. The classification performance of the algorithm has been evaluated on a data set containing verified examples of oil spill...
متن کاملOil spill detection using in Sentinel-1 satellite images based on Deep learning concepts
Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...
متن کامل